UNIT 5: Rules Integration / Integration Concepts Highlights

As a Concept: Integration is referred to as the "anti-derivative" or the inverse process of the finding the derivative. It provides us a way to get from a function calculating change back to the original.

An indefinite integral refers to an integral in its general form that represents a family of functions.

$$\int f(x)dx = F(x) + C$$

Basic Integration Rules					
$\int x^n dx$	\rightarrow	$y = \frac{x^{n+1}}{n+1} + C$	$\int v(t)dt$	\rightarrow	s(t) + C
$\int \frac{1}{x} dx$	\rightarrow	$y = \ln x + C$	$\int a(t)dt$	\rightarrow	v(t) + C
$\int e^{x} dx$	\rightarrow	$y = e^x + C$	$\int a^x dx$	\rightarrow	$y = \frac{a^x}{\ln a} + C$

Trigonometric Integration Rules

✓ Basic Trig Integrals

<u>Function</u>	<u>Antiderivative</u>
$f(x) = \sin x$ or $\int \sin x dx$	$F(x) = -\cos x + C$
$f(x) = \cos x$ or $\int \cos x dx$	$F(x) = \sin x + C$
$f(x) = \sec^2 x$ or $\int \sec^2 x dx$	$F(x) = \tan x + C$
$f(x) = \csc^2 x$ or $\int \csc^2 x dx$	$F(x) = -\cot x + C$
$f(x) = \sec x \tan x \text{or} \int \sec x \tan x dx$	$F(x) = \sec x + C$
$f(x) = \csc x \cot x \text{or} \int \csc x \cot x dx$	$F(x) = -\csc x + C$

✓ Inverse Trig

$$\int \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} dx \quad \Rightarrow \qquad y = \sin^{-1} f(x) + C$$
$$\int \frac{f'(x)}{1 + [f(x)]^2} dx \quad \Rightarrow \qquad y = \tan^{-1} f(x) + C$$

Eliminating the Constant (+C)

When given initial condition, the value of the constant (+C) can be determined after the integration by substituting the given into the result.

- ✓ Working backwards from f'' with initial conditions
- ✓ Working backwards from a(t) with initial conditions

Ex:
$$f''(x) = 24x^2 - 18x + 2$$
, $f'(1) = 6$ and $f(1) = 3$
 $f'(x) = 8x^3 - 9x^2 + 2x + 5$
 $f(x) = 2x^4 - 3x^3 + x^2 + 5x - 2$

Integrating with U-Substitution

✓ Algebraic (Quantity raised to power)

Procedure:

- 1. Let "u" equal the algebraic quantity on the inside.
- 2. Find \underline{du} .
- dx
- 3. Match $\frac{du}{dx}$ to the original function.

4. Substitute.

- 5. Find the antiderivative in terms of "u".
- 6. Re-substitute for u in terms of x.

	 Trigonometric (Quantity raised to a Power) 					
Procedure:						
1.	Let " <i>u</i> " equal the trigonometric ratio being	Let " u " equal the trigonometric ratio being raised to the power (inside quantity).				
2.	Find \underline{du} .					
	dx	$\sin^7 x$				
3.	Match \underline{du} to the original function.	$\int \sin^6 x \cos x dx = \frac{\sin^6 x}{\pi} + C$				
4	dx Substitute	J 7				
4. 5	Find the antiderivative in terms of " u "					
5. 6.	Re-substitute for u in terms of x .					
	✓ Trigonometric (Unusual Angle)					
Procedure:						
1.	Let " <i>u</i> " equal the unusual angle.					
2.	2. Find $\frac{du}{dt}$.					
	dx	$\int 2x\cos(x^2 + 3)dx = \sin(x^2 + 3) + C$				
3.	3. Match $\frac{du}{dt}$ to the original function.					
	dx					
4.	Substitute.					
5.	5. Find the antiderivative in terms for $trig(u)$.					
0.	Re-substitute for u in terms of x.					
	\checkmark Exponential	2				
Procedure:	F	$\int 4xe^{x^2} dx - 2e^{x^2} + C \qquad \int 2^{3x} dx - \frac{2^{3x}}{2} + C$				
1.	Let "u" equal the exponent	$\int 4xe^{-} dx - 2e^{-} + C$ $\int 2^{-} dx - \frac{1}{3\ln 2} + C$				
2.	Follow previous procedures using u.					
	V Logarithmia					
Wł	• Logarithmic	n look for the situation where the numerator is being expressed as the				
der	derivative of the expression in the denominator" (or can be manipulated into that form).					
Procedure:						
1.	Let "u" equal the denominator.	$\int \frac{x+2}{2} dx = \frac{1}{2} \ln 3x^2 + 12x + C$				
2.	Follow previous procedures using u.	$J 3x^2 + 12x = 6$				

 $\int x^3 (x^4 + 3)^2 dx = \frac{(x^4 + 3)^3}{12} + C$

Evaluating Definite Integrals

A definite integral refers to an integral that has a lower limit and an upper limit which can be evaluated to a specific value.

$$\int_{a}^{b} f(x)dx = [F(b) + C] - [F(a) + C] = F(b) - F(a)$$
 *[Upper - Lower]!

Properties of Definite Integrals

I. Addition Property:

If
$$a < b < c$$
, then $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$

III. Bounds Property:

 $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$

Separation of Variables (Differential Equations)

Procedure:

- 1. Use differentials to get like variables on the same side.
- 2. Find the antiderivative of each side.
- 3. Put into y form, if possible.

Integration Concepts (Theorems/Connections)

✓ Fundamental Theorem of Calculus (FTOC) (pg. 386)

-If f is a continuous function on [a,b] and x is a point in (a,b), then d

This theorem serves as the link between Differentiation and Integration as inverse processes. The statement below says that "if f is integrated and the result is differentiated, we are back at the original function".

✓ Total Change Theorem (pg. 377)

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

We know that F'(x) represents the rate of change of y = F(x) with respect to x, and [F(b) - F(a)] represents the change in y as x changes from a to b, so this can be constructed to form what is called the Total Change Thm.

 \checkmark Average Value definition (pg. 470)

Average Value =

$$= \frac{1}{(b-a)}\int_{a}^{b}f(x)dx$$

This calculates the avg value of the function on the stated interval [a,b].

✓ Mean Value Theorem (pg. 470)

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$
OR f(c) = average value of f(x)

This will find the specific value on [a,b] where the average value of the function is being attained.

II. Coefficient Property:

For any Real Number c,
$$\int_{a}^{b} cf(x)dx = c\int_{a}^{b} f(x)dx$$

IV. Integral Sum/Difference Property:

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\frac{dy}{dx} = \frac{-2x}{y^2} \longrightarrow y = \sqrt[3]{-3x^2 + C}$$

$$\frac{d}{dx}\left[\int_{a}^{x} f(t)dt\right] = f(x)$$

NOTE: Most commonly will be applied to draw conclusions from a table OR graph of data where the function is unknown.

Slope Fields

A slope field is a tool that can be used to approximate the graph of a function when you know the derivative. If given an initial condition, you will then be able to sketch the original function.

$$y' = 2x$$

If you know an initial condition, such as (1,-2), you can sketch

By following the slope field, you get a rough picture of what the curve looks like.

In this case, it is a parabola.